hZnT8 (Slc30a8) Transgenic Mice That Overexpress the R325W Polymorph Have Reduced Islet Zn2+ and Proinsulin Levels, Increased Glucose Tolerance After a High-Fat Diet, and Altered Levels of Pancreatic Zinc Binding Proteins

Author:

Tumarada Nirmala1,Li Li1,Bai Shi1,Sheline Christian T.12

Affiliation:

1. Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA

2. Department of Neurology, Stony Brook University Hospital, Stony Brook, NY

Abstract

Zinc (Zn2+) is involved in both type 1 diabetes (T1DM) and type 2 diabetes (T2DM). The wild-type (WT) form of the β-cell–specific Zn2+ transporter, ZNT8, is linked to T2DM susceptibility. ZnT8 null mice have a mild phenotype with a slight decrease in glucose tolerance, whereas patients with the ZnT8 R325W polymorphism (rs13266634) have decreased proinsulin staining and susceptibility to T2DM. We measured Zn2+, insulin, and proinsulin stainings and performed intraperitoneal glucose tolerance testing in transgenic mice overexpressing hZnT8 WT or hZnT8 R325W fed a normal or high-fat diet. The hZnT8 R325W transgenic line had lower pancreatic [Zn2+]i and proinsulin and higher insulin and glucose tolerance compared with control littermates after 10 weeks of a high-fat diet in male mice. The converse was true for the hZnT8 WT transgenic line, and dietary Zn2+ supplementation also induced glucose intolerance. Finally, pancreatic zinc binding proteins were identified by Zn2+-affinity chromatography and proteomics. Increasing pancreatic Zn2+ (hZnT8WT) induced nucleoside diphosphate kinase B, and Zn2+ reduction (hZnT8RW) induced carboxypeptidase A1. These data suggest that pancreatic Zn2+ and proinsulin levels covary but are inversely variant with insulin or glucose tolerance in the HFD model of T2DM suggesting novel therapeutic targets.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3