Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production

Author:

Breen Danna M.12,Yue Jessica T.Y.12,Rasmussen Brittany A.13,Kokorovic Andrea13,Cheung Grace W.C.13,Lam Tony K.T.1234

Affiliation:

1. Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada

2. Department of Medicine, University of Toronto, Toronto, Ontario, Canada

3. Department of Physiology, University of Toronto, Toronto, Ontario, Canada

4. Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada

Abstract

OBJECTIVE Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODS We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTS Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet–induced duodenal CCK resistance. CONCLUSIONS In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3