Affiliation:
1. Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Abstract
Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment.
Article Highlights
Funder
National Natural Science Foundation of China
Key Research and Development Program of Hubei Province
National Key Research and Development Program of China
Publisher
American Diabetes Association
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献