Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages

Author:

Bu Yun1,Okunishi Katsuhide1,Yogosawa Satomi1,Mizuno Kouichi1,Irudayam Maria Johnson2,Brown Chester W.2,Izumi Tetsuro13ORCID

Affiliation:

1. Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan

2. Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN

3. Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Japan

Abstract

Previous genetic studies in mice have shown that functional loss of activin receptor–like kinase 7 (ALK7), a type I transforming growth factor-β receptor, increases lipolysis to resist fat accumulation in adipocytes. Although growth/differentiation factor 3 (GDF3) has been suggested to function as a ligand of ALK7 under nutrient-excess conditions, it is unknown how GDF3 production is regulated. Here, we show that a physiologically low level of insulin converts CD11c− adipose tissue macrophages (ATMs) into GDF3-producing CD11c+ macrophages ex vivo and directs ALK7-dependent accumulation of fat in vivo. Depletion of ATMs by clodronate upregulates adipose lipases and reduces fat mass in ALK7-intact obese mice, but not in their ALK7-deficient counterparts. Furthermore, depletion of ATMs or transplantation of GDF3-deficient bone marrow negates the in vivo effects of insulin on both lipolysis and fat accumulation in ALK7-intact mice. The GDF3-ALK7 axis between ATMs and adipocytes represents a previously unrecognized mechanism by which insulin regulates both fat metabolism and mass.

Funder

Japan Society for the Promotion of Science

Japan Diabetes Foundation

Novo Nordisk Insulin Study Award

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3