1288-P: Predictive Modeling of Type 2 Diabetes and Complications Using Machine Learning

Author:

KHATTAB AHMED1,CHEN SHANG-FU1,SADAEI HOSSEIN J.1,TORKAMANI ALI1

Affiliation:

1. La Jolla, CA

Abstract

Background: Given the prevalence of T2D worldwide, early detection and prevention of both T2D and its complications are of utmost importance. We propose comprehensive person-centered machine learning (ML) risk prediction models for T2D and complications. Methods: From the UK biobank (UKBB), we identified a prevalent T2D group at baseline (9,136 cases and 108,615 controls), an incident T2D group over 10 years of follow-up (29,845 cases and 354,818 controls), and an incident diabetic kidney disease (DKD) group (4435 cases and 33083 controls). We included 3 types of risk factors: clinical (biomarkers and diseases with known diabetes risk like CVD), genetic in the form of polygenic risk scores (PRS) for the pathogenesis of T2D and other clinical risks, and lifestyle. For each group, we trained a model using decision-tree-based ensemble ML algorithm. We then used SHAP values to determine feature importance and chose the top 10 predictors to build a final model. Results: The T2D prevalence model included 74 features and had an AUC of 0.97, and area under the precision-recall curve (PR AUC) of 0.83. The final model with the top features (HbA1c, T2D PRS, primary HTN, LDL, major dietary changes in the last 5 years, age, plasma glucose, waist circumference, and total cholesterol) had an AUC of 0.98, and PR AUC of 0.88. The T2D incidence model included the same 74 features and had an AUC of 0.92, and PR AUC of 0.57. The final model with the top features had an AUC of 0.93, and PR AUC of 0.65. The DKD risk prediction model comprised 85 features, and it had an AUC of 0.81, and PR AUC of 0.37. The final model with the top features (Cystatin C, primary HTN, eGFR, age, HbA1c, T2D PRS, urea, BMI, BMI PRS, NAFLD PRS) had an AUC of 0.80, and PR AUC of 0.39. Conclusions: This study is an ongoing work; our interim results show the capability of ML to identify relevant risk factors and that comprehensive ML models could help clinicians decide on more precise and individualized T2D screening and treatment approaches to prevent T2D and complications. Disclosure A.Khattab: None. S.Chen: None. H.J.Sadaei: None. A.Torkamani: None.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Machine Learning Based Diabetes Mellitus Survival Prognostic Model;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3