TCF7L2 Polymorphisms Modulate Proinsulin Levels and β-Cell Function in a British Europid Population

Author:

Loos Ruth J.F.1,Franks Paul W.12,Francis Richard W.3,Barroso Inês4,Gribble Fiona M.35,Savage David B.5,Ong Ken K.1,O'Rahilly Stephen35,Wareham Nicholas J.1

Affiliation:

1. Medical Research Council Epidemiology Unit, Cambridge, U.K

2. Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, Sweden

3. Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K

4. Metabolic Disease Group, The Wellcome Trust Sanger Institute, Hinxton, U.K

5. Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K

Abstract

Rapidly accumulating evidence shows that common T-cell transcription factor (TCF)7L2 polymorphisms confer risk of type 2 diabetes through unknown mechanisms. We examined the association between four TCF7L2 single nucleotide polymorphisms (SNPs), including rs7903146, and measures of insulin sensitivity and insulin secretion in 1,697 Europid men and women of the population-based MRC (Medical Research Council)-Ely study. The T-(minor) allele of rs7903146 was strongly and positively associated with fasting proinsulin (P = 4.55 × 10−9) and 32,33 split proinsulin (P = 1.72 × 10−4) relative to total insulin levels; i.e., differences between T/T and C/C homozygotes amounted to 21.9 and 18.4% respectively. Notably, the insulin-to-glucose ratio (IGR) at 30-min oral glucose tolerance test (OGTT), a frequently used surrogate of first-phase insulin secretion, was not associated with the TCF7L2 SNP (P > 0.7). However, the insulin response (IGR) at 60-min OGTT was significantly lower in T-allele carriers (P = 3.5 × 10−3). The T-allele was also associated with higher A1C concentrations (P = 1.2 × 10−2) and reduced β-cell function, assessed by homeostasis model assessment of β-cell function (P = 2.8 × 10−2). Similar results were obtained for the other TCF7L2 SNPs. Of note, both major genes involved in proinsulin processing (PC1, PC2) contain TCF-binding sites in their promoters. Our findings suggest that the TCF7L2 risk allele may predispose to type 2 diabetes by impairing β-cell proinsulin processing. The risk allele increases proinsulin levels and diminishes the 60-min but not 30-min insulin response during OGTT. The strong association between the TCF7L2 risk allele and fasting proinsulin but not insulin levels is notable, as, in this unselected and largely normoglycemic population, external influences on β-cell stress are unlikely to be major factors influencing the efficiency of proinsulin processing.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference25 articles.

1. Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323,2006

2. Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjogren M, Florez JC, Almgren P, Isomaa B, Orho-Melander M, Lindblad U, Daly MJ, Tuomi T, Hirschhorn JN, Ardlie KG, Groop LC, Altshuler D: Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 55:2890–2895,2006

3. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PIW, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D, The Diabetes Prevention Program Research Group: TCF7L2 Polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med 355:241–250,2006

4. van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, Hofker MH, Wijmenga C: Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort. Diabetologia 50:59–62,2006

5. Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H, Silver KD, Mitchell BD, Shuldiner AR: Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 55:2654–2659,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3