Fatty Acid Synthase Inhibitors Modulate Energy Balance via Mammalian Target of Rapamycin Complex 1 Signaling in the Central Nervous System

Author:

Proulx Karine1,Cota Daniela1,Woods Stephen C.1,Seeley Randy J.1

Affiliation:

1. From the Department of Psychiatry, University of Cincinnati, Genome Research Institute, Cincinnati, Ohio

Abstract

OBJECTIVE—Evidence links the hypothalamic fatty acid synthase (FAS) pathway to the regulation of food intake and body weight. This includes pharmacological inhibitors that potently reduce feeding and body weight. The mammalian target of rapamycin (mTOR) is an intracellular fuel sensor whose activity in the hypothalamus is also linked to the regulation of energy balance. The purpose of these experiments was to determine whether hypothalamic mTOR complex 1 (mTORC1) signaling is involved in mediating the effects of FAS inhibitors. RESEARCH DESIGN AND METHODS—We measured the hypothalamic phosphorylation of two downstream targets of mTORC1, S6 kinase 1 (S6K1) and S6 ribosomal protein (S6), after administration of the FAS inhibitors C75 and cerulenin in rats. We evaluated food intake in response to FAS inhibitors in rats pretreated with the mTOR inhibitor rapamycin and in mice lacking functional S6K1 (S6K1−/−). Food intake and phosphorylation of S6K1 and S6 were also determined after C75 injection in rats maintained on a ketogenic diet. RESULTS—C75 and cerulenin increased phosphorylation of S6K1 and S6, and their anorexic action was reduced in rapamycin-treated rats and in S6K1−/− mice. Consistent with our previous findings, C75 was ineffective at reducing caloric intake in ketotic rats. Under ketosis, C75 was also less efficient at stimulating mTORC1 signaling. CONCLUSIONS—These findings collectively indicate an important interaction between the FAS and mTORC1 pathways in the central nervous system for regulating energy balance, possibly via modulation of neuronal glucose utilization.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3