Retinol-Binding Protein 4 in Human Obesity

Author:

Janke Jürgen1,Engeli Stefan1,Boschmann Michael1,Adams Frauke1,Böhnke Jana1,Luft Friedrich C.1,Sharma Arya M.2,Jordan Jens1

Affiliation:

1. Franz-Volhard Clinical Research Center, Charité Campus Buch, and HELIOS Klinikum Berlin, Berlin, Germany

2. Department of Medicine, McMaster University, Hamilton, Ontario, Canada

Abstract

Studies in mice suggest that adipocytes serve as glucose sensors and regulate systemic glucose metabolism through release of serum retinol-binding protein 4 (RBP4). This model has not been validated in humans. RBP4 was highly expressed in isolated mature human adipocytes and secreted by differentiating human adipocytes. In contrast to the animal data, RBP4 mRNA was downregulated in subcutaneous adipose tissue of obese women, and circulating RBP4 concentrations were similar in normal weight, overweight, and obese women (n = 74). RBP4 was positively correlated with GLUT4 expression in adipose tissue, independent of any obesity-associated variable. Five percent weight loss slightly decreased adipose RBP4 expression but did not influence circulating RBP4. In another set of experiments, we stratified patients (n = 14) by low or high basal fasting interstitial glucose concentrations, as determined by the microdialysis technique. Venous glucose concentrations were similar throughout oral glucose tolerance testing, and basal RBP4 expression in adipose tissue and serum RBP4 concentrations were similar in the groups with higher and lower interstitial glucose levels. Our findings point to profound differences between rodents and humans in the regulation of adipose or circulating RBP4 and challenge the notion that glucose uptake by adipocytes has a dominant role in the regulation of RBP4.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3