Evaluation of Serum 1,5 Anhydroglucitol Levels as a Clinical Test to Differentiate Subtypes of Diabetes

Author:

Pal Aparna12,Farmer Andrew J.123,Dudley Christina12,Selwood Mary P.3,Barrow Beryl A.12,Klyne Rhiannon24,Grew Jilly P.12,McCarthy Mark I.125,Gloyn Anna L.12,Owen Katharine R.12

Affiliation:

1. Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, U.K.;

2. Oxford National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, U.K.;

3. Department of Primary Care Medicine, University of Oxford, Oxford, U.K.;

4. Diabetes Trials Unit, OCDEM, University of Oxford, Oxford, U.K.;

5. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.

Abstract

OBJECTIVE Assignment of the correct molecular diagnosis in diabetes is necessary for informed decisions regarding treatment and prognosis. Better clinical markers would facilitate discrimination and prioritization for genetic testing between diabetes subtypes. Serum 1,5 anhydroglucitol (1,5AG) levels were reported to differentiate maturity-onset diabetes of the young due to HNF1A mutations (HNF1A-MODY) from type 2 diabetes, but this requires further validation. We evaluated serum 1,5AG in a range of diabetes subtypes as an adjunct for defining diabetes etiology. RESEARCH DESIGN AND METHODS 1,5AG was measured in U.K. subjects with: HNF1A-MODY (n = 23), MODY due to glucokinase mutations (GCK-MODY, n = 23), type 1 diabetes (n = 29), latent autoimmune diabetes in adults (LADA, n = 42), and type 2 diabetes (n = 206). Receiver operating characteristic curve analysis was performed to assess discriminative accuracy of 1,5AG for diabetes etiology. RESULTS Mean (SD range) 1,5AG levels were: GCK-MODY 13.06 μg/ml (5.74–29.74), HNF1A-MODY 4.23 μg/ml (2.12–8.44), type 1 diabetes 3.09 μg/ml (1.45–6.57), LADA 3.46 μg/ml (1.42–8.45), and type 2 diabetes 5.43 (2.12–13.23). Levels in GCK-MODY were higher than in other groups (P < 10−4 vs. each group). HNF1A-MODY subjects showed no difference in unadjusted 1,5AG levels from type 2 diabetes, type 1 diabetes, and LADA. Adjusting for A1C revealed a difference between HNF1A-MODY and type 2 diabetes (P = 0.001). The discriminative accuracy of unadjusted 1,5AG levels was 0.79 for GCK-MODY versus type 2 diabetes and 0.86 for GCK-MODY versus HNF1A-MODY but was only 0.60 for HNF1A-MODY versus type 2 diabetes. CONCLUSIONS In our dataset, serum 1,5AG performed well in discriminating GCK-MODY from other diabetes subtypes, particularly HNF1A-MODY. Measurement of 1,5AG levels could inform decisions regarding MODY diagnostic testing.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3