Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets

Author:

Stanley William J.12,Litwak Sara A.1,Quah Hong Sheng12,Tan Sih Min3,Kay Thomas W.H.12,Tiganis Tony4,de Haan Judy B.3,Thomas Helen E.12,Gurzov Esteban N.12

Affiliation:

1. St Vincent’s Institute of Medical Research, Melbourne, Victoria, Australia

2. Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Melbourne, Victoria, Australia

3. Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia

4. Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia

Abstract

Type 1 diabetes (T1D) is the result of an autoimmune assault against the insulin-producing pancreatic β-cells, where chronic local inflammation (insulitis) leads to β-cell destruction. T cells and macrophages infiltrate into islets early in T1D pathogenesis. These immune cells secrete cytokines that lead to the production of reactive oxygen species (ROS) and T-cell invasion and activation. Cytokine-signaling pathways are very tightly regulated by protein tyrosine phosphatases (PTPs) to prevent excessive activation. Here, we demonstrate that pancreata from NOD mice with islet infiltration have enhanced oxidation/inactivation of PTPs and STAT1 signaling compared with NOD mice that do not have insulitis. Inactivation of PTPs with sodium orthovanadate in human and rodent islets and β-cells leads to increased activation of interferon signaling and chemokine production mediated by STAT1 phosphorylation. Furthermore, this exacerbated STAT1 activation–induced cell death in islets was prevented by overexpression of the suppressor of cytokine signaling-1 or inactivation of the BH3-only protein Bim. Together our data provide a mechanism by which PTP inactivation induces signaling in pancreatic islets that results in increased expression of inflammatory genes and exacerbated insulitis.

Funder

National Health and Medical Research Council

Juvenile Diabetes Research Foundation International

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3