Resistance to Diet-Induced Obesity and Improved Insulin Sensitivity in Mice With a Regulator of G Protein Signaling–Insensitive G184S Gnai2 Allele

Author:

Huang Xinyan1,Charbeneau Raelene A.1,Fu Ying1,Kaur Kuljeet1,Gerin Isabelle2,MacDougald Ormond A.23,Neubig Richard R.13

Affiliation:

1. Department of Pharmacology, University of Michigan, Ann Arbor, Michigan

2. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan

3. Department of Internal Medicine (Cardiovascular Medicine), University of Michigan, Ann Arbor, Michigan

Abstract

OBJECTIVE—Guanine nucleotide binding protein (G protein)–mediated signaling plays major roles in endocrine/metabolic function. Regulators of G protein signaling (RGSs, or RGS proteins) are responsible for the subsecond turn off of G protein signaling and are inhibitors of signal transduction in vitro, but the physiological function of RGS proteins remains poorly defined in part because of functional redundancy. RESEARCH DESIGN AND METHODS—We explore the role of RGS proteins and Gαi2 in the physiologic regulation of body weight and glucose homeostasis by studying genomic “knock-in” mice expressing RGS-insensitive Gαi2 with a G184S mutation that blocks RGS protein binding and GTPase acceleration. RESULTS—Homozygous Gαi2G184S knock-in mice show slightly reduced adiposity. On a high-fat diet, male Gαi2G184S mice are resistant to weight gain, have decreased body fat, and are protected from insulin resistance. This appears to be a result of increased energy expenditure. Both male and female Gαi2G184S mice on a high-fat diet also exhibit enhanced insulin sensitivity and increased glucose tolerance despite females having similar weight gain and adiposity compared with wild-type female mice. CONCLUSIONS—RGS proteins and Gαi2 signaling play important roles in the control of insulin sensitivity and glucose metabolism. Identification of the specific RGS proteins involved might permit their consideration as potential therapeutic targets for obesity-related insulin resistance and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3