Recurrent Moderate Hypoglycemia Ameliorates Brain Damage and Cognitive Dysfunction Induced by Severe Hypoglycemia

Author:

Puente Erwin C.1,Silverstein Julie1,Bree Adam J.1,Musikantow Daniel R.1,Wozniak David F.2,Maloney Susan2,Daphna-Iken Dorit1,Fisher Simon J.13

Affiliation:

1. Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri;

2. Department of Psychiatry, Washington University, St. Louis, Missouri;

3. Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri.

Abstract

OBJECTIVE Although intensive glycemic control achieved with insulin therapy increases the incidence of both moderate and severe hypoglycemia, clinical reports of cognitive impairment due to severe hypoglycemia have been highly variable. It was hypothesized that recurrent moderate hypoglycemia preconditions the brain and protects against damage caused by severe hypoglycemia. RESEARCH DESIGN AND METHODS Nine-week-old male Sprague-Dawley rats were subjected to either 3 consecutive days of recurrent moderate (25–40 mg/dl) hypoglycemia (RH) or saline injections. On the fourth day, rats were subjected to a hyperinsulinemic (0.2 units · kg−1 · min−1) severe hypoglycemic (∼11 mg/dl) clamp for 60 or 90 min. Neuronal damage was subsequently assessed by hematoxylin-eosin and Fluoro-Jade B staining. The functional significance of severe hypoglycemia–induced brain damage was evaluated by motor and cognitive testing. RESULTS Severe hypoglycemia induced brain damage and striking deficits in spatial learning and memory. Rats subjected to recurrent moderate hypoglycemia had 62–74% less brain cell death and were protected from most of these cognitive disturbances. CONCLUSIONS Antecedent recurrent moderate hypoglycemia preconditioned the brain and markedly limited both the extent of severe hypoglycemia–induced neuronal damage and associated cognitive impairment. In conclusion, changes brought about by recurrent moderate hypoglycemia can be viewed, paradoxically, as providing a beneficial adaptive response in that there is mitigation against severe hypoglycemia–induced brain damage and cognitive dysfunction.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3