Prevention by Protein Kinase C Inhibitors of Glucose-Induced Insulin-Receptor Tyrosine Kinase Resistance in Rat Fat Cells

Author:

Müller H K1,Kellerer M1,Ermel B1,Mühlhöfer A1,Obermaier-Kusser B1,Vogt B1,Häring H U1

Affiliation:

1. Institute for Diabetes Research Munich, Germany

Abstract

Hyperglycemia causes insulin-receptor kinase (IRK) resistance in fat cells. We characterized the mechanism of IRK inhibition and studied whether it is the consequence of a glucose-induced stimulation of protein kinase C (PKC). Fat cells were incubated for 1 or 12 h in culture medium containing either a low- (5-mM) or high- (25-mM) glucose concentration. IRK was isolated, insulin binding was determined, and autophosphorylation was studied in vitro with [γ-32P]ATP or was determined by Western blotting with anti-phosphotyrosine antibodies. Substrate phosphorylation was investigated with the artificial substrate poly(Glu80-Tyr20). Partially purified insulin receptor from rat fat cells, which were cultured under high-glucose conditions for 1 or 12 h, showed no alteration of insulin binding but a reduced insulin effecton autophosphorylation (30 ± 7% of control) and poly(Glu80-Tyr20) phosphorylation (55.5 ± 9% of control). Lineweaver-Burk plots of the enzyme kinetics revealed, beside a reduced Vmax, and increased KM (from 30 μM to 80 μM) for ATP of IRK from high-glucose–treated cells. Because a similar inhibition pattern was earlier found for IRK from fat cells afteracute phorbol ester stimulation, we investigated whether activation of PKC might be the cause of the reduced IRK activity. We isolated PKC from the cytosol and the membrane fraction of high- and low-glucose fat cells and determined the diacylglycerol- and phospholipid-stimulated PKC activity toward the substrate histone. There was no significant change of cytosolic PKC; however, membrane-associated PKC activity was increased in high-glucose–treated cells. To evaluate whether the activation of PKC causes the inhibitors (H 7, staurosrine, and polymyxin B) and tested whether the effect of hyperglycemia was stillpresent when fat cells were pretreated with phorbolester (tetradecanoylphorbol acetate) for 24 h. Indeed, H 7, staurosporine, and polymyxin B blocked the inhibitory effect of hyperglycemia on IRK. Furthermore, in cells treated for 24 h with tetradecanoylphorhol acetate, no inhibitory effect of hyperglycemia was observed. This and the effect of the PKC inhibitors are consistent with a causal relationship between IRK inhibition and PKC activation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3