Characteristics and Mechanisms of High-Glucose–Induced Overexpression of Basement Membrane Components in Cultured Human Endothelial Cells

Author:

Cagliero Enrico1,Roth Timothy1,Roy Sayon1,Lorenzi Mara1

Affiliation:

1. Eye Research Institute and Departments of Ophthalmology and Medicine, Harvard Medical School Boston, Massachusetts

Abstract

Growing evidence that high glucose may be a causative agent of the thickened vascular basement membranes that characterize diabetic microangiopathy prompted this investigation of the underlying mechanisms. When exposed to 30 mM glucose, 70% of 52 primary cultures of human endothelial cells, each derived from a single umbilical vein, showed increased levels of fibronectin (median 181% of control, range 104–549%) and collagen IV mRNA (175% of control, range 101–807%). The response of the two transcripts to high glucose was concordant in 77% of the 52 cultures studied (P = 0.01), required 5 days of exposure, and was accompanied by proportionally increased synthesis of the respective protein. Laminin B1 expression was also upregulated by high glucose, concordantly with that of fibronectin and collagen IV. Increased fibronectin and collagen IV mRNA levels resulted from increased gene transcription (median 183 and 236% of control, respectively) without evidence of translational regulation, were not triggered by hypertonicity or signals originating from the matrix, and were also induced by hexoses with limited (D-galactose) or no (L-glucose) access to metabolic pathways but capable of inducing nonenzymatic glycosylation. There was no amplification of the overexpressed genes. Thus, high glucose upregulates in a coordinated fashion the transcription of genes coding for basement membrane components through effects exerted intracellularly or at the cell-matrix boundary and modulated by individual characteristics of the target cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3