Degradation of Intraendosomal Insulin by Insulin-Degrading Enzyme Without Acidification

Author:

Hamel Frederick G1,Mahoney Michael J1,Duckworth William C1

Affiliation:

1. Departments of Internal Medicine and Pharmacology, University of Nebraska Medical Center, and the Veterans Affairs Medical Center Omaha, Nebraska

Abstract

The nature of insulin degradation within endosomes was studied in vitro. Radiolabeled insulin was perfused into rat liver via the portal vein, and insulin-containing endosomes were prepared by differential centrifugation. The endosomes were incubated in various buffers, and hormone degradation was monitored by Sephadex G-50 chromatography and high-performance liquid chromatography (HPLC). Endosomes incubated in simple imidazole or HEPES (pH 7.4) buffers rapidly degraded insulin to intermediate- and then to low-molecular-weight products that were lost from the vesicles. HPLC analysis of insulin-sized material showed the products to be the same as those produced by intact cells. The endosomes did not acidify in these buffers (as assessed by the acridine orange method), and ATP had no effects. When the endosomes were incubated in a chloride-containing buffer, degradation was greatly inhibited, and acidification did not occur. Both insulin degradation and acidification were activated when Mg-ATP was added to this buffer system. HPLC analysis of the products generated in this system revealed not only typical cellular products but additional less hydrophobic products. Western-blot analysis of endosomal protein with anti-insulin-degrading enzyme antibody showed this enzyme to be present. In conclusion, isolated endosomes rapidly and completely degrade insulin through products that are typical of cellular degradation without requiring acidification. Chloride-containing buffers inhibit endosomal degradation, which is reversed by Mg-ATP, but this system does not mimic cellular degradation. At least one of the enzymes responsible for insulin degradation is insulin-degrading enzyme.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3