Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice

Author:

Morinaga Hidetaka1,Mayoral Rafael12,Heinrichsdorff Jan1,Osborn Olivia1,Franck Niclas1,Hah Nasun3,Walenta Evelyn1,Bandyopadhyay Gautam1,Pessentheiner Ariane R.14,Chi Tyler J.1,Chung Heekyung1,Bogner-Strauss Juliane G.4,Evans Ronald M.35,Olefsky Jerrold M.1,Oh Da Young1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA

2. Networked Biomedical Research Center on Hepatic and Digestive Diseases (CIBERehd), Monforte de Lemos 3-5, Instituto de Salud Carlos III, Madrid, Spain

3. Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA

4. Institute of Biochemistry, Graz University of Technology, Graz, Austria

5. Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA

Abstract

The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance.

Funder

National Institutes of Health

Austrian Science Fund

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3