Renal Fibrosis and Glomerulosclerosis in a New Mouse Model of Diabetic Nephropathy and Its Regression by Bone Morphogenic Protein-7 and Advanced Glycation End Product Inhibitors

Author:

Sugimoto Hikaru1,Grahovac Gordan1,Zeisberg Michael1,Kalluri Raghu123

Affiliation:

1. Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts

2. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts

3. Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts

Abstract

Diabetic nephropathy is currently the most common cause of end-stage renal disease (ESRD) in the western world. A mouse model for diabetic nephropathy that encompasses the salient features of this disease in the kidney is not available. Here, we report that CD1 mice, in contrast to inbred C57BL/6 and 129Sv strains, develop ESRD associated with prominent tubulointerstitial nephritis and fibrosis within 3 months and die because of diabetic complications by 6–7 months after a single injection of streptozotocin. Histopathologic lesions observed in these mice mimic human diabetic nephropathy, including glomerular hypertrophy, diffuse glomerulosclerosis, tubular atrophy, interstitial fibrosis, and decreased renal excretory function. Next, we tested the therapeutic efficacy of bone morphogenic protein-7 (BMP-7) and inhibitors of advanced glycation end products (AGEs), aminoguanidine and pyridoxamine, to inhibit and regress the progression of renal disease in diabetic CD1 mice. We demonstrate that although aminoguanidine, pyridoxamine, and BMP-7 significantly inhibit glomerular lesions, BMP-7 is most effective in the inhibition of tubular inflammation and tubulointerstitial fibrosis in these mice. Collectively, our results report a new mouse model for diabetic nephropathy with prominent interstitial inflammation and fibrosis and the selective inhibition of diabetic kidney disease by AGE inhibitors and BMP-7.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3