Affiliation:
1. Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
2. Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN
3. Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN
Abstract
We used hepatic balance and tracer ([3H]glucose) techniques to examine the impact of “breakfast” on hepatic glucose metabolism later in the same day. From 0–240 min, 2 groups of conscious dogs (n = 9 dogs/group) received a duodenal infusion of glucose (GLC) or saline (SAL), then were fasted from 240–360 min. Three dogs from each group were euthanized and tissue collected at 360 min. From 360–600 min, the remaining dogs underwent a hyperinsulinemic (4× basal) hyperglycemic clamp (arterial blood glucose 146 ± 2 mg/dL) with portal GLC infusion. The total GLC infusion rate was 14% greater in dogs infused with GLC than in those receiving SAL (AUC360–600min 2,979 ± 296 vs. 2,597 ± 277 mg/kg, respectively). The rates of hepatic glucose uptake (5.8 ± 0.8 vs. 3.2 ± 0.3 mg ⋅ kg−1 ⋅ min−1) and glycogen storage (4.7 ± 0.6 vs. 2.9 ± 0.3 mg ⋅ kg−1 ⋅ min−1) during the clamp were markedly greater in dogs receiving GLC compared with those receiving SAL. Hepatic glycogen content was ∼50% greater, glycogen synthase activity was ∼50% greater, glycogen phosphorylase activity was ∼50% lower, and the amount of phosphorylated glycogen synthase was 34% lower, indicating activation of the enzyme, in dogs receiving GLC compared with those receiving SAL. Thus, morning GLC primed the liver to extract and store more glucose in the presence of hyperinsulinemic hyperglycemia later in the same day, indicating that breakfast enhances the liver’s role in glucose disposal in subsequent same-day meals.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine