Atorvastatin Targets the Islet Mevalonate Pathway to Dysregulate mTOR Signaling and Reduce β-Cell Functional Mass

Author:

Shen Linyan1,Gu Yanyun2ORCID,Qiu Yixuan2,Cheng Tingting1,Nie Aifang2,Cui Canqi2,Fu Chenyang2,Li Tingting2,Li Xuelin2,Fu Lihong2,Wang Yanqiu2,Ni Qicheng2,Wang Qidi2,Wang Weiqing2,Feng Bo1ORCID

Affiliation:

1. Department of Metabolism and Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

2. National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Statins are cholesterol-lowering agents that increase the incidence of diabetes and impair glucose tolerance via their detrimental effects on nonhepatic tissues, such as pancreatic islets, but the underlying mechanism has not been determined. In atorvastatin (ator)-treated high-fat diet–fed mice, we found reduced pancreatic β-cell size and β-cell mass, fewer mature insulin granules, and reduced insulin secretion and glucose tolerance. Transcriptome profiling of primary pancreatic islets showed that ator inhibited the expression of pancreatic transcription factor, mechanistic target of rapamycin (mTOR) signaling, and small G protein (sGP) genes. Supplementation of the mevalonate pathway intermediate geranylgeranyl pyrophosphate (GGPP), which is produced by 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, significantly restored the attenuated mTOR activity, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) expression, and β-cell function after ator, lovastatin, rosuvastatin, and fluvastatin treatment; this effect was potentially mediated by sGP prenylation. Rab5a, the sGP in pancreatic islets most affected by ator treatment, was found to positively regulate mTOR signaling and β-cell function. Rab5a knockdown mimicked the effect of ator treatment on β-cells. Thus, ator impairs β-cell function by regulating sGPs, for example, Rab5a, which subsequently attenuates islet mTOR signaling and reduces functional β-cell mass. GGPP supplementation could constitute a new approach for preventing statin-induced hyperglycemia.

Funder

National Natural Science Foundation of China

Prevention and Control of Major Chronic Noncommunicable Diseases Research of China

Key Specialty Construction Project of Pudong Health and Family Planning Commission of Shanghai

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3