Mesangial Cell Hypertrophy by High Glucose Is Mediated by Downregulation of the Tumor Suppressor PTEN

Author:

Mahimainathan Lenin1,Das Falguni1,Venkatesan Balachandar1,Choudhury Goutam Ghosh123

Affiliation:

1. Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas

2. Geriatric Research, Education and Clinical Center, San Antonio, Texas

3. South Texas Veterans Health Care System, San Antonio, Texas

Abstract

Diabetic nephropathy is characterized early in its course by glomerular hypertrophy and, importantly, mesangial hypertrophy, which correlate with eventual glomerulosclerosis. The mechanism of hypertrophy, however, is not known. Gene disruption of the tumor suppressor PTEN, a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway, in fruit flies and mice demonstrated its role in size control in a cell-specific manner. Here, we investigated the mechanism of mesangial hypertrophy in response to high extracellular glucose. We link early renal hypertrophy with significant reduction in PTEN expression in the streptozotocin-induced diabetic kidney cortex and glomeruli, concomitant with activation of Akt. Similarly, exposure of mesangial cells to high concentrations of glucose also decreased PTEN expression and its phosphatase activity, resulting in increased Akt activity. Expression of PTEN inhibited high-glucose–induced mesangial cell hypertrophy, and expression of dominant-negative PTEN was sufficient to induce hypertrophy. In diabetic nephropathy, the hypertrophic effect of hyperglycemia is thought to be mediated by transforming growth factor-β (TGF-β). TGF-β significantly reduced PTEN expression in mesangial cells, with a reduction in its phosphatase activity and an increase in Akt activation. PTEN and dominant-negative Akt attenuated TGF-β–induced hypertrophy of mesangial cells. Finally, we show that inhibition of TGF-β signal transduction blocks the effect of high glucose on PTEN downregulation. These data identify a novel mechanism placing PTEN as a key regulator of diabetic mesangial hypertrophy involving TGF-β signaling.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3