Navigating the Depths and Avoiding the Shallows of Pancreatic Islet Cell Transcriptomes

Author:

Mawla Alex M.1,Huising Mark O.12ORCID

Affiliation:

1. Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA

2. Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA

Abstract

Islet gene expression has been widely studied to better understand the transcriptional features that define a healthy β-cell. Transcriptomes of FACS-purified α-, β-, and δ-cells using bulk RNA-sequencing have facilitated our understanding of the complex network of cross talk between islet cells and its effects on β-cell function. However, these approaches were by design not intended to resolve heterogeneity between individual cells. Several recent studies used single-cell RNA sequencing (scRNA-Seq) to report considerable heterogeneity within mouse and human β-cells. In this Perspective, we assess how this newfound ability to assess gene expression at single-cell resolution has enhanced our understanding of β-cell heterogeneity. We conduct a comprehensive assessment of several single human β-cell transcriptome data sets and ask if the heterogeneity reported by these studies showed overlap and concurred with previously known examples of β-cell heterogeneity. We also illustrate the impact of the inevitable limitations of working at or below the limit of detection of gene expression at single cell resolution and their consequences for the quality of single–islet cell transcriptome data. Finally, we offer some guidance on when to opt for scRNA-Seq and when bulk sequencing approaches may be better suited.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

JDRF

Stephen F. and Bettina A. Sims Immunology Fellowship

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3