Lipocalin-2 Deficiency Impairs Thermogenesis and Potentiates Diet-Induced Insulin Resistance in Mice

Author:

Guo Hong1,Jin Daozhong1,Zhang Yuanyuan1,Wright Wendy2,Bazuine Merlijn3,Brockman David A.1,Bernlohr David A.2,Chen Xiaoli1

Affiliation:

1. Department of Food Science and Nutrition, University of Minnesota, Minneapolis–St. Paul, Minnesota;

2. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis–St. Paul, Minnesota; and

3. Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

Abstract

OBJECTIVE Lipocalin (LCN) 2 belongs to the lipocalin subfamily of low–molecular mass–secreted proteins that bind small hydrophobic molecules. LCN2 has been recently characterized as an adipose-derived cytokine, and its expression is upregulated in adipose tissue in genetically obese rodents. The objective of this study was to investigate the role of LCN2 in diet-induced insulin resistance and metabolic homeostasis in vivo. RESEARCH DESIGN AND METHODS Systemic insulin sensitivity, adaptive thermogenesis, and serum metabolic and lipid profile were assessed in LCN2-deficient mice fed a high-fat diet (HFD) or regular chow diet. RESULTS The molecular disruption of LCN2 in mice resulted in significantly potentiated diet-induced obesity, dyslipidemia, fatty liver disease, and insulin resistance. LCN2−/− mice exhibit impaired adaptive thermogenesis and cold intolerance. Gene expression patterns in white and brown adipose tissue, liver, and muscle indicate that LCN2−/− mice have increased hepatic gluconeogenesis, decreased mitochondrial oxidative capacity, impaired lipid metabolism, and increased inflammatory state under the HFD condition. CONCLUSIONS LCN2 has a novel role in adaptive thermoregulation and diet-induced insulin resistance.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3