Single-Cell RNA Sequencing Reveals a Role for Reactive Oxygen Species and Peroxiredoxins in Fatty Acid–Induced Rat β-Cell Proliferation

Author:

Vivoli Alexis123,Ghislain Julien13,Filali-Mouhim Ali3,Angeles Zuraya Elisa123,Castell Anne-Laure123,Sladek Robert14,Poitout Vincent123ORCID

Affiliation:

1. 1Montreal Diabetes Research Center, Montréal, Québec, Canada

2. 2Department of Medicine, Université de Montréal, Montréal, Québec, Canada

3. 3Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada

4. 4Department of Human Genetics, McGill University and McGill Genome Centre, Montréal, Québec, Canada

Abstract

The functional mass of insulin-secreting pancreatic β-cells expands to maintain glucose homeostasis in the face of nutrient excess, in part via replication of existing β-cells. Type 2 diabetes appears when these compensatory mechanisms fail. Nutrients including glucose and fatty acids are important contributors to the β-cell compensatory response, but their underlying mechanisms of action remain poorly understood. We investigated the transcriptional mechanisms of β-cell proliferation in response to fatty acids. Isolated rat islets were exposed to 16.7 mmol/L glucose with or without 0.5 mmol/L oleate (C18:1) or palmitate (C16:0) for 48 h. The islet transcriptome was assessed by single-cell RNA sequencing. β-Cell proliferation was measured by flow cytometry. Unsupervised clustering of pooled β-cells identified different subclusters, including proliferating β-cells. β-Cell proliferation increased in response to oleate but not palmitate. Both fatty acids enhanced the expression of genes involved in energy metabolism and mitochondrial activity. Comparison of proliferating versus nonproliferating β-cells and pseudotime ordering suggested the involvement of reactive oxygen species (ROS) and peroxiredoxin signaling. Accordingly, N-acetyl cysteine and the peroxiredoxin inhibitor conoidin A both blocked oleate-induced β-cell proliferation. Our study reveals a key role for ROS signaling through peroxiredoxin activation in oleate-induced β-cell proliferation.

Funder

Quebec Cardiometabolic Health, Diabetes and Obesity Research Network

National Institutes of Health

Canadian Institutes of Health Research

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3