Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1

Author:

Perry Rachel J.ORCID

Abstract

With the rising epidemics of obesity and nonalcoholic fatty liver disease (NAFLD) and its downstream consequences including steatohepatitis, cirrhosis, and type 2 diabetes in the U.S. and worldwide, new therapeutic approaches are urgently needed to treat these devastating conditions. Glucagon, known for a century to be a glucose-raising hormone and clearly demonstrated to contribute to fasting and postprandial hyperglycemia in both type 1 and type 2 diabetes, represents an unlikely target to improve health in those with metabolic syndrome. However, recent work from our group and others’ identifies an unexpected role for glucagon as a potential means of treating NAFLD, improving insulin sensitivity, and improving the lipid profile. We propose a unifying, calcium-dependent mechanism for glucagon’s effects both to stimulate hepatic gluconeogenesis and to enhance hepatic mitochondrial oxidation: signaling through the inositol 1,4,5-trisphosphate receptor type 1 (INSP3R1), glucagon activates phospholipase C (PKC)/protein kinase A (PKA) signaling to enhance adipose triglyceride lipase (ATGL)-dependent intrahepatic lipolysis and, in turn, increase cytosolic gluconeogenesis by allosteric activation of pyruvate carboxylase. Simultaneously in the mitochondria, calcium transferred through mitochondria-associated membranes activates several dehydrogenases in the tricarboxylic acid cycle, correlated with an increase in mitochondrial energy expenditure and reduction in ectopic lipid. This model suggests that short-term, cyclic treatment with glucagon or other INSP3R1 antagonists could hold promise as a means to reset lipid homeostasis in patients with NAFLD.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference59 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3