Mechanisms of Insulin Resistance After Insulin-Induced Hypoglycemia in Humans: The Role of Lipolysis

Author:

Lucidi Paola1,Rossetti Paolo1,Porcellati Francesca1,Pampanelli Simone1,Candeloro Paola1,Andreoli Anna Marinelli1,Perriello Gabriele1,Bolli Geremia B.1,Fanelli Carmine G.1

Affiliation:

1. From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy.

Abstract

OBJECTIVE Changes in glucose metabolism occurring during counterregulation are, in part, mediated by increased plasma free fatty acids (FFAs), as a result of hypoglycemia-activated lipolysis. However, it is not known whether FFA plays a role in the development of posthypoglycemic insulin resistance as well. RESEARCH DESIGN AND METHODS We conducted a series of studies in eight healthy volunteers using acipimox, an inhibitor of lipolysis. Insulin action was measured during a 2-h hyperinsulinemic-euglycemic clamp (plasma glucose [PG] 5.1 mmo/l) from 5:00 p.m. to 7:00 p.m. or after a 3-h morning hyperinsulinemic-glucose clamp (from 10 a.m. to 1:00 p.m.), either euglycemic (study 1) or hypoglycemic (PG 3.2 mmol/l, studies 2–4), during which FFA levels were allowed to increase (study 2), were suppressed by acipimox (study 3), or were replaced by infusing lipids (study 4). [6,6-2H2]-Glucose was infused to measure glucose fluxes. RESULTS Plasma adrenaline, norepinephrine, growth hormone, and cortisol levels were unchanged (P > 0.2). Glucose infusion rates (GIRs) during the euglycemic clamp were reduced by morning hypoglycemia in study 2 versus study 1 (16.8 ± 2.3 vs. 34.1 ± 2.2 μmol/kg/min, respectively, P < 0.001). The effect was largely removed by blockade of lipolysis during hypoglycemia in study 3 (28.9 ± 2.6 μmol/kg/min, P > 0.2 vs. study 1) and largely reproduced by replacement of FFA in study 4 (22.3 ± 2.8 μmol/kg/min, P < 0.03 vs. study 1). Compared with study 2, blockade of lipolysis in study 3 decreased endogenous glucose production (2 ± 0.3 vs. 0.85 ± 0.1 μmol/kg/min, P < 0.05) and increased glucose utilization (16.9 ± 1.85 vs. 28.5 ± 2.7 μmol/kg/min, P < 0.05). In study 4, GIR fell by ∼23% (22.3 ± 2.8 μmol/kg/min, vs. study 3, P = 0.058), indicating a role of acipimox per se on insulin action. CONCLUSION Lipolysis induced by hypoglycemia counterregulation largely mediates posthypoglycemic insulin resistance in healthy subjects, with an estimated overall contribution of ∼39%.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3