Elusive Proximal Signals of β-Cells for Insulin Secretion

Author:

MacDonald Michael J1

Affiliation:

1. University of Wisconsin Medical School Madison, Wisconsin

Abstract

The β-cell is unique because its major agonists, i.e., insulin secretagogues, undergo metabolism instead of interacting with a receptor. This perspectives presents the hypothesis that the first part of a metabolic signal of a secretagogue is specific to the secretagogue and the β-cell and can be envisioned as proximal. The second part, which occurs after transduction to more universal signaling mechanisms, is viewed as distal. Distal signaling and exocytosis in the β-cell operate the same as in other cells. Aerobic glycolysis is required for glucose-induced insulin release. Because glyceraldehyde, which enters metabolism at the triose phosphates in the glycolytic pathway, is a potent insulin secretagogue but pyruvate, which is metabolized in the mitochondrion, is not an insulin secretagogue, the proximal signal for glucose-induced insulin release originates with an interaction between the central part of the glycolytic pathway and mitochondrial metabolism. The proximal message in leucine-induced insulin release originates with leucine allosterically activating glutamate dehydrogenase, which activates endogenous glutamate metabolism, and by the metabolism of leucine itself. The methyl ester of succinate is a potent experimental insulin secretogogue. It is puzzling why the glucose signal requires the interplay of glycolysis and mitochondrial metabolism, whereas the signals from leucine and succinate originate entirely from within the mitochondrion. Leucine-induced insulin release is suppressed and glucose-induced insulin release is activated in islets cultured at a high concentration of glucose. Conversely, leucine-induced insulin release is activated and glucose-induced insulin release is suppressed in islets cultured at low glucose. We have correlated suppression of the insulinotropism of leucine and glucose with decreased expression of the genes that encode the catalytic subunit of the first component of the branched-chain ketoacid dehydrogenase complex and the pyruvate dehydrogenase complex, respectively. This indicates that the proximal signal is specific to the secretagogue, whereas distal signals are more universal and are shared by many secretagogues. The proximal signaling mechanisms have yet to be elucidated, but many distal mechanisms are known.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3