Operation of Randle's Cycle in Patients With NIDDM

Author:

Bevilacqua Stefano1,Buzzigoli Giuseppe1,Bonadonna Riccardo1,Brandi Luigi S1,Oleggini Marco1,Boni Claudio1,Geloni Mario1,Ferrannini Eleuterio1

Affiliation:

1. Metabolism Unit of the Consiglio Nazionale delle Ricerche, Institute of Clinical Physiology, 2nd Medical Clinic; the Institute of General Surgery, University of Pisa; and the Division of Gastroenterology, S. Chiara Hospital Pisa, Italy

Abstract

It has been suggested that the insulin resistance of non-insulin-dependent diabetes mellitus (NIDDM) may be caused by substrate competition between glucose and free fatty acids (FFAs) (Randle's cycle). We measured substrate oxidation and energy metabolism in 10 nonobese untreated NIDDM patients with fasting glucose levels of 7–8 mM with indirect calorimetry in the basal state and during an isoglycemic-hyperinsulinemic (∼100 mU/L) clamp without (control) and with a concomitant infusion (∼0.35 mmol/min) of Intralipid, a triglyceride emulsion. In the control study, fasting rates of total glucose turnover ([3−3H]glucose) and glucose and lipid oxidation (9.4 ± 1.4, 7.3 ± 1.3, and 3.0 ± 0.4 μmol · kg−1 · min−1, respectively) were comparable with those of nondiabetic individuals. After insulin administration, lipid oxidation was normally suppressed (to 1.3 ± 0.3 μ · kg−1 · min−1 P < 0.01), as were the circulating levels of FFA, glycerol, and β-hydroxybutyrate, whereas glucose oxidation doubled (14.1 ± 1.8 μmol; · kg−1 · min−1 P <0.01). Because glycemia was clamped at 7.5 mM, endogenous glucose production (EGP) was completely suppressed, and total glucose disposal was stimulated (to 25.7 ± 5.2 μmol · kg−1 · min−1 P < 0.01 vs. baseline), but glucose clearance (3.6 ± 0.8 ml · kg−1 · min−1) was 30% reduced compared with normal. With concomitant lipid infusion, FFA, glycerol, and β-hydroxybutyrate all rose during the clamp; correspondingly, lipid oxidation was maintained at fasting rates (3.6 ± 0.2 μmol · kg−1 · min−1 P < 0.01 vs. control). As a consequence, the insulin-induced increase in glucose oxidation was abolished (7.9 ±1.3 μmol · kg−1 · min−1 P < 0.01 vs. control), and total glucose disposal was inhibited (21.8 ± 4.6 μmol · kg−1 · min−1 P < 0.05 vs. control) by an amount almost equal to the decrement in glucose oxidation. Lipid infusion did not detectably interfere with insulin-induced suppression of EGP. Energy expenditure failed to increase during the control insulin clamp but was significantly stimulated (∼10%, P < 0.01) by concomitant lipid administration (diet-induced thermogenesis). We conclude that in mildly hyperglycemic, nonobese NIDDM patients, excessive fatty substrate oxidation is unlikely to be responsible for the insulin resistance; increased lipid provision, however, enhances lipid oxidation and energy expenditure and inhibits glucose oxidation and total disposal. Thus, in this type of diabetes, Randle's cycle does not appear to be spontaneously overactive but can be induced acutely, with metabolic and energetic consequences similar to those observed in nondiabetic subjects.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3