MAPK Kinase Kinase-1 Is Essential for Cytokine-Induced c-Jun NH2-Terminal Kinase and Nuclear Factor-κB Activation in Human Pancreatic Islet Cells

Author:

Mokhtari Dariush1,Myers Jason W.2,Welsh Nils1

Affiliation:

1. Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

2. Department of Biochemistry, Stanford University School of Medicine, Stanford, California

Abstract

OBJECTIVE—The transcription factor nuclear factor-κB (NF-κB) and the mitogen-activated protein kinases (MAPKs) c-Jun NH2-terminal kinase (JNK) 1/2 are known to play decisive roles in cytokine-induced damage of rodent β-cells. The upstream events by which these factors are activated in response to cytokines are, however, uncharacterized. The aim of the present investigation was to elucidate a putative role of the MAPK kinase kinase-1 (MEKK-1) in cytokine-induced signaling. RESEARCH DESIGN AND METHODS—To establish a functional role of MEKK-1, the effects of transient MEKK-1 overexpression in βTC-6 cells, achieved by lipofection and cell sorting, and MEKK-1 downregulation in βTC-6 cells and human islet cells, achieved by diced–small interfering RNA treatment, were studied. RESULTS—We observed that overexpression of wild-type MEKK-1, but not of a kinase dead MEKK-1 mutant, resulted in potentiation of cytokine-induced JNK activation, inhibitor of κB (IκB) degradation, and cell death. Downregulation of MEKK-1 in human islet cells provoked opposite effects, i.e., attenuation of cytokine-induced JNK and MKK4 activation, IκB stability, and a less pronounced NF-κB translocation. βTC-6 cells with a downregulated MEKK-1 expression displayed also a weaker cytokine-induced iNOS expression and lower cell death rates. Also primary mouse islet cells with downregulated MEKK-1 expression were protected against cytokine-induced cell death. CONCLUSIONS—MEKK-1 mediates cytokine-induced JNK- and NF-κB activation, and this event is necessary for iNOS expression and cell death.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3