Defective Lipid Delivery Modulates Glucose Tolerance and Metabolic Response to Diet in Apolipoprotein E–Deficient Mice

Author:

Hofmann Susanna M.1,Perez-Tilve Diego2,Greer Todd M.1,Coburn Beth A.1,Grant Erin1,Basford Joshua E.1,Tschöp Matthias H.2,Hui David Y.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio

2. Department of Psychiatry, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio

Abstract

OBJECTIVE—Apolipoprotein E (ApoE) regulates plasma lipid levels via modulation of lipolysis and serving as ligand for receptor-mediated clearance of triglyceride (TG)-rich lipoproteins. This study tested the impact of modulating lipid delivery to tissues on insulin responsiveness and diet-induced obesity. RESEARCH DESIGN AND METHODS—ApoE+/+ and apoE−/− mice were placed on high-fat–high-sucrose diabetogenic diet or control diet for 24 weeks. Plasma TG clearance, glucose tolerance, and tissue uptake of dietary fat and glucose were assessed. RESULTS—Plasma TG clearance and lipid uptake by adipose tissue were impaired, whereas glucose tolerance was improved in control diet–fed apoE−/− mice compared with apoE+/+ mice after an oral lipid load. Fat mass was reduced in apoE−/− mice compared with apoE+/+ mice under both dietary conditions. The apoE−/− mice exhibited lower body weight and insulin levels than apoE+/+ mice when fed the diabetogenic diet. Glucose tolerance and uptake by muscle and brown adipose tissue (BAT) was also improved in mice lacking apoE when fed the diabetogenic diet. Indirect calorimetry studies detected no difference in energy expenditure and respiratory quotient between apoE+/+ and apoE−/− mice on control diet. Energy expenditure and uncoupling protein-1 expression in BAT were slightly but not significantly increased in apoE−/− mice on diabetogenic diet. CONCLUSIONS—These results demonstrated that decreased lipid delivery to insulin-sensitive tissues improves insulin sensitivity and ameliorates diet-induced obesity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3