Potential Role of Regulatory T Cells in Reversing Obesity-Linked Insulin Resistance and Diabetic Nephropathy

Author:

Eller Kathrin12,Kirsch Alexander12,Wolf Anna M.34,Sopper Sieghart3,Tagwerker Andrea2,Stanzl Ursula5,Wolf Dominik34,Patsch Wolfgang6,Rosenkranz Alexander R.1,Eller Philipp57

Affiliation:

1. Clinical Division of Nephrology, Department of Internal Medicine, Medical University Graz, Graz, Austria

2. Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria

3. Department of Internal Medicine V, Innsbruck Medical University, Innsbruck, Austria

4. Tyrolean Cancer Research Institute, Innsbruck Medical University, Innsbruck, Austria

5. Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria

6. Department of Laboratory Medicine, Landeskliniken and Paracelsus Private Medical University Salzburg, Salzburg, Austria

7. Clinical Division of Angiology, Department of Internal Medicine, Medical University Graz, Graz, Austria

Abstract

OBJECTIVE To assess the potential role of FoxP3-expressing regulatory T cells (Tregs) in reversing obesity-linked insulin resistance and diabetic nephropathy in rodent models and humans. RESEARCH DESIGN AND METHODS To characterize the role of Tregs in insulin resistance, human visceral adipose tissue was first evaluated for Treg infiltration and second, the db/db mouse model was evaluated. RESULTS Obese patients with insulin resistance displayed significantly decreased natural Tregs but an increase in adaptive Tregs in their visceral adipose tissue as compared with lean control subjects. To further evaluate the pathogenic role of Tregs in insulin resistance, the db/db mouse model was used. Treg depletion using an anti-CD25 monoclonal antibody enhanced insulin resistance as shown by increased fasting blood glucose levels as well as an impaired insulin sensitivity. Moreover, Treg-depleted db/db mice developed increased signs of diabetic nephropathy, such as albuminuria and glomerular hyperfiltration. This was paralleled by a proinflammatory milieu in both murine visceral adipose tissue and the kidney. Conversely, adoptive transfer of CD4+FoxP3+ Tregs significantly improved insulin sensitivity and diabetic nephropathy. Accordingly, there was increased mRNA expression of FoxP3 as well as less abundant proinflammatory CD8+CD69+ T cells in visceral adipose tissue and kidneys of Treg-treated animals. CONCLUSIONS Data suggest a potential therapeutic value of Tregs to improve insulin resistance and end organ damage in type 2 diabetes by limiting the proinflammatory milieu.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3