Affiliation:
1. Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado
2. Joslin Diabetes Center, Boston, Massachusetts
Abstract
A series of recent studies in humans and the NOD mouse model have highlighted the central role that autoimmunity directed against insulin, in particular the insulin B chain 9-23 peptide, may play in the pathogenesis of type 1 diabetes. Both pathogenic and protective T-cell clones recognizing the B:9-23 peptide have been produced. This report describes the successful creation of BDC12-4.1 T-cell receptor (TCR) transgenic mice with spontaneous insulitis in F1 mice (FVB × NOD) and spontaneous diabetes in NOD.RAG−/− (backcross 1 generation). Disease progression is heterogeneous and is modified by a series of genetic factors including heterozygosity (H-2g7/H-2q) versus homozygosity for H-2g7, the presence of additional T-/B-cell receptor–rearranged genes (RAG+ versus RAG−/−), and the insulin 2 gene knockout (the insulin gene expressed in the NOD thymus). Despite lymphopenia, 40% of H-2g7/g7 BDC12-4.1 TCR+ RAG−/− Ins2−/− mice are diabetic by 10 weeks of age. As few as 13,500 transgenic T-cells from a diabetic TCR+ RAG−/− mouse can transfer diabetes to an NOD.scid mouse. The current study demonstrates that the BDC12-4.1 TCR is sufficient to cause diabetes at NOD backcross 1, bypassing polygenic inhibition of insulitis and diabetogenesis.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献