Disruption of Hypoxia-Inducible Factor 1 in Adipocytes Improves Insulin Sensitivity and Decreases Adiposity in High-Fat Diet–Fed Mice

Author:

Jiang Changtao1,Qu Aijuan1,Matsubara Tsutomu1,Chanturiya Tatyana2,Jou William2,Gavrilova Oksana2,Shah Yatrik M.13,Gonzalez Frank J.1

Affiliation:

1. Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland

2. Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

3. Division of Gastroenterology, Department of Molecular and Integrative Physiology and Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan

Abstract

OBJECTIVE Obesity, insulin resistance, and type 2 diabetes form a tightly correlated cluster of metabolic disorders in which adipose is one of the first affected tissues. The role of hypoxia and hypoxia-inducible factor 1 (HIF1) in the development of high-fat diet (HFD)–induced obesity and insulin resistance was investigated using animal models. RESEARCH DESIGN AND METHODS Mice with adipocyte-specific targeted disruption of the genes encoding the HIF1 obligatory subunits Hif1α or Arnt (Hif1β) were generated using an aP2-Cre transgene with the Cre/LoxP system. The mice were fed an HFD for 12 weeks and their metabolic phenotypes were determined. Gene expression patterns in adipose tissues were also determined by microarray and quantitative PCR. RESULTS On an HFD, adipocyte-specific ARNT knockout mice and adipocyte-specific HIF1α knockout mice exhibit similar metabolic phenotypes, including reduced fat formation, protection from HFD-induced obesity, and insulin resistance compared with similarly fed wild-type controls. The cumulative food intake remained similar; however, the metabolic efficiency was lower in adipocyte-specific HIF1α knockout mice. Moreover, indirect calorimetry revealed respiratory exchange ratios were reduced in adipocyte-specific HIF1α knockout mice. Hyperinsulinemic-euglycemic clamp studies demonstrated that targeted disruption of HIF1α in adipocytes enhanced whole-body insulin sensitivity. The improvement of insulin resistance is associated with decreased expression of Socs3 and induction of adiponectin. CONCLUSIONS Inhibition of HIF1 in adipose tissue ameliorates obesity and insulin resistance. This study reveals that HIF1 could provide a novel potential therapeutic target for obesity and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3