High Glucose, High Insulin, and Their Combination Rapidly Induce Laminin-β1 Synthesis by Regulation of mRNA Translation in Renal Epithelial Cells

Author:

Mariappan Meenalakshmi M.1,Feliers Denis1,Mummidi Srinivas2,Choudhury Goutam Ghosh13,Kasinath Balakuntalam S.13

Affiliation:

1. O’Brien Kidney Research Center, Department of Medicine, University of Texas Health Science Center, South Texas Veterans Health Care System, GRECC San Antonio, Texas

2. Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center, South Texas Veterans Health Care System, GRECC San Antonio, Texas

3. South Texas Veterans Health Care System, GRECC San Antonio, Texas

Abstract

Laminin is a glycoprotein that contributes to renal extracellular matrix expansion in diabetes. We investigated regulation of laminin-β1 synthesis in murine renal proximal tubular epithelial cells by 30 mmol/l glucose (high glucose), 1 nmol/l insulin (high insulin), and their combination (high glucose+high insulin), simulating conditions observed during progression of type 2 diabetes. Compared with 5 mmol/l glucose and no insulin (control), high glucose alone, high insulin alone, or high glucose+high insulin together increased laminin-β1 chain protein synthesis within 5 min, lasting for up to 60 min with no change in laminin-β1 mRNA levels. Cycloheximide, but not actinomycin-D, abrogated increased laminin-β1 synthesis. High glucose, high insulin, and high glucose+high insulin stimulated phosphorylation of 4E-BP1, a repressor binding protein for eukaryotic initiation factor 4E (eIF4E), that was dependent on activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin. High glucose, high insulin, and high glucose+high insulin also promoted release of eIF4E from 4E-BP1, phosphorylation of eIF4E, and increase in eIF4E association with eIF4G, critical events in the initiation phase of mRNA translation. High glucose, high insulin, and high glucose+high insulin increased Erk phosphorylation, which is an upstream regulator of eIF4E phosphorylation, and PD098059, which is a MEK inhibitor that blocks Erk activation, abolished laminin-β1 synthesis. This is the first demonstration of rapid increment in laminin-β1 synthesis by regulation of its mRNA translation by cells exposed to high glucose, high insulin, or high glucose+high insulin.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3