Changes in the Coexpression of Innate Immunity Genes During Persistent Islet Autoimmunity Are Associated With Progression of Islet Autoimmunity: Diabetes Autoimmunity Study in the Young (DAISY)

Author:

Carry Patrick M.1ORCID,Waugh Kathleen2,Vanderlinden Lauren A.1,Johnson Randi K.3ORCID,Buckner Teresa1ORCID,Rewers Marian2,Steck Andrea K.2ORCID,Yang Ivana13,Fingerlin Tasha E.145,Kechris Katerina4,Norris Jill M.12ORCID

Affiliation:

1. 1Department of Epidemiology, Colorado School of Public Health, Aurora, CO

2. 2Barbara Davis Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO

3. 3Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO

4. 4

5. 5Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO

Abstract

Longitudinal changes in gene expression during islet autoimmunity (IA) may provide insight into biological processes that explain progression to type 1 diabetes (T1D). We identified individuals from Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, autoantibodies present on two or more visits. Illumina’s NovaSeq 6000 was used to quantify gene expression in whole blood. With linear mixed models we tested for changes in expression after IA that differed across individuals who progressed to T1D (progressors) (n = 25), reverted to an autoantibody-negative stage (reverters) (n = 47), or maintained IA positivity but did not develop T1D (maintainers) (n = 66). Weighted gene coexpression network analysis was used to identify coexpression modules. Gene Ontology pathway analysis of the top 150 differentially expressed genes (nominal P < 0.01) identified significantly enriched pathways including leukocyte activation involved in immune response, innate immune response, and regulation of immune response. We identified a module of 14 coexpressed genes with roles in the innate immunity. The hub gene, LTF, is known to have immunomodulatory properties. Another gene within the module, CAMP, is potentially relevant based on its role in promoting β-cell survival in a murine model. Overall, results provide evidence of alterations in expression of innate immune genes prior to onset of T1D.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3