Oxidative Stress Inhibits Healthy Adipose Expansion Through Suppression of SREBF1-Mediated Lipogenic Pathway

Author:

Okuno Yosuke1,Fukuhara Atsunori12ORCID,Hashimoto Erika1,Kobayashi Hironori1,Kobayashi Sachiko13,Otsuki Michio1,Shimomura Iichiro1

Affiliation:

1. Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

2. Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

3. Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

Abstract

Recent studies have emphasized the association of adipose oxidative stress (Fat reactive oxygen species [ROS]) with the pathogenesis of metabolic disorders in obesity. However, the causal roles of Fat ROS in metabolic disturbances in vivo remain unclear because no mouse model has been available in which oxidative stress is manipulated by targeting adipocytes. In this research, we generated two models of Fat ROS–manipulated mice and evaluated the metabolic features in diet-induced obesity. Fat ROS–eliminated mice, in which Cat and Sod1 were overexpressed in adipocytes, exhibited adipose expansion with decreased ectopic lipid accumulation and improved insulin sensitivity. Conversely, Fat ROS–augmented mice, in which glutathione was depleted specifically in adipocytes, exhibited restricted adipose expansion associated with increased ectopic lipid accumulation and deteriorated insulin sensitivity. In the white adipose tissues of these mice, macrophage polarization, tissue fibrosis, and de novo lipogenesis were significantly changed. In vitro approaches identified KDM1A-mediated attenuation of sterol-regulatory element-binding transcription factor 1 (SREBF1) transcriptional activities as the underlying mechanism for the suppression of de novo lipogenesis by oxidative stress. Thus, our study uncovered the novel roles of Fat ROS in healthy adipose expansion, ectopic lipid accumulation, and insulin resistance, providing the possibility for the adipocyte-targeting antioxidant therapy.

Funder

Japan Society for the Promotion of Science

Japan Foundation for Applied Enzymology

Japan Health Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3