Diabetic Downregulation of Nrf2 Activity via ERK Contributes to Oxidative Stress–Induced Insulin Resistance in Cardiac Cells In Vitro and In Vivo

Author:

Tan Yi12,Ichikawa Tomonaga3,Li Jinqing3,Si Qiusheng4,Yang Huaitao4,Chen Xiangbai4,Goldblatt Curtis S.4,Meyer Colin J.5,Li Xiaokun1,Cai Lu12,Cui Taixing13

Affiliation:

1. Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, Zhejiang, China

2. Department of Pediatrics, University of Louisville, Louisville, Kentucky

3. Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina

4. Department of Pathology, Memorial Medical Center, Johnstown, Pennsylvania

5. Reata Pharmaceuticals, Irving, Texas

Abstract

OBJECTIVE Oxidative stress is implicated in cardiac insulin resistance, a critical risk factor for cardiac failure, but the direct evidence remains missing. This study explored a causal link between oxidative stress and insulin resistance with a focus on a regulatory role of redox sensitive transcription factor NF-E2–related factor 2 (Nrf2) in the cardiac cells in vitro and in vivo. RESEARCH DESIGN AND METHODS Chronic treatment of HL-1 adult cardiomyocyte with hydrogen peroxide led to insulin resistance, reflected by a significant suppression of the insulin-induced glucose uptake. This was associated with an exaggerated phosphorylation of extracellular signal–related kinase (ERK). Although U0126, an ERK inhibitor, enhanced insulin sensitivity and attenuated oxidative stress–induced insulin resistance, LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), worsened the insulin resistance. Moreover, insulin increased Nrf2 transcriptional activity, which was blocked by LY294002 but enhanced by U0126. Forced activation of Nrf2 by adenoviral over-expression of Nrf2 inhibited the increased ERK activity and recovered the blunted insulin sensitivity on glucose uptake in cardiomyocytes that were chronically treated with H2O2. In the hearts of streptozotocin-induced diabetic mice and diabetic patients Nrf2 expression significantly decreased along with significant increases in 3-nitrotyrosine accumulation and ERK phosphorylation, whereas these pathogenic changes were not observed in the heart of diabetic mice with cardiac-specific overexpression of a potent antioxidant metallothionein. Upregulation of Nrf2 by its activator, Dh404, in cardiomyocytes in vitro and in vivo prevented hydrogen peroxide– and diabetes-induced ERK activation and insulin-signaling downregulation. CONCLUSIONS ERK-mediated suppression of Nrf2 activity leads to the oxidative stress–induced insulin resistance in adult cardiomyocytes and downregulated glucose utilization in the diabetic heart.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 324 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3