Retinal Microglial Activation and Inflammation Induced by Amadori-Glycated Albumin in a Rat Model of Diabetes

Author:

Ibrahim Ahmed S.123,El-Remessy Azza B.1245,Matragoon Suraporn45,Zhang Wenbo6,Patel Yogin7,Khan Sohail1,Al-Gayyar Mohammed M.345,El-Shishtawy Mamdouh M.3,Liou Gregory I.12

Affiliation:

1. Department of Ophthalmology, Medical College of Georgia, Augusta, Georgia

2. Vision Discovery Institute, Medical College of Georgia, Augusta, Georgia

3. Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

4. Program in Clinical and Experimental Therapeutics, University of Georgia, Athens, Georgia

5. VA Medical Center, Augusta, Georgia

6. Vascular Biology Center, Medical College of Georgia, Augusta, Georgia

7. Department of Medicine, Medical College of Georgia, Augusta, Georgia

Abstract

OBJECTIVE During diabetes, retinal microglial cells are activated to release inflammatory cytokines that initiate neuronal loss and blood–retinal barrier breakdown seen in diabetic retinopathy (DR). The mechanism by which diabetes activates microglia to release those inflammatory mediators is unclear and was therefore elucidated. RESEARCH DESIGN AND METHODS Microglia activation was characterized in streptozocin-injected rats and in isolated microglial cells using immunofluorescence, enzyme-linked immunosorbent assay, RT-PCR, and Western blot analyses. RESULTS In 8-week diabetic retina, phospho-extracellular signal–related kinase (ERK) and P38 mitogen-activated protein kinases were localized in microglia, but not in Mueller cells or astrocytes. At the same time, Amadori-glycated albumin (AGA)-like epitopes were featured in the regions of microglia distribution, implicating a pathogenic effect on microglial activation. To test this, diabetic rats were treated intravitreally with A717, a specific AGA-neutralizing antibody, or murine IgG. Relative to nondiabetic rats, diabetic rats (IgG-treated) manifested 3.9- and 7.9-fold increases in Iba-1 and tumor necrosis factor (TNF)-α mRNAs, respectively. Treatment of diabetic rats with A717 significantly attenuated overexpression of these mRNAs. Intravitreal injection of AGA per se in normal rats resulted in increases of Iba-1 expression and TNF-α release. Guided by these results, a cultured retinal microglia model was developed to study microglial response after AGA treatment and the mechanistic basis behind this response. The results showed that formation of reactive oxygen species and subsequent activation of ERK and P38, but not Jun NH2-terminal kinase, are molecular events underpinning retinal microglial TNF-α release during AGA treatment. CONCLUSIONS These results provide new insights in understanding the pathogenesis of early DR, showing that the accumulated AGA within the diabetic retina elicits the microglial activation and secretion of TNF-α. Thus, intervention trials with agents that neutralize AGA effects may emerge as a new therapeutic approach to modulate early pathologic pathways long before the occurrence of vision loss among patients with diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3