Pharmacologic PPAR-γ Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes

Author:

Tedesco Serena12,Ciciliot Stefano1,Menegazzo Lisa1,D’Anna Marianna12,Scattolini Valentina12,Cappellari Roberta12,Cignarella Andrea2,Avogaro Angelo2ORCID,Albiero Mattia12,Fadini Gian Paolo12ORCID

Affiliation:

1. Veneto Institute of Molecular Medicine, Padova, Italy

2. Department of Medicine, University of Padova, Padova, Italy

Abstract

Mobilization of hematopoietic stem/progenitor cells (HSPC) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPC. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR-γ activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc, and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In patients with diabetes on pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization.

Funder

European Foundation for the Study of Diabetes

Ministry of University and Education

Italian Diabetes Society

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3