CREBH Couples Circadian Clock With Hepatic Lipid Metabolism

Author:

Zheng Ze1,Kim Hyunbae1,Qiu Yining1,Chen Xuequn2,Mendez Roberto1,Dandekar Aditya3,Zhang Xuebao1,Zhang Chunbin1,Liu Andrew C.4,Yin Lei5,Lin Jiandie D.6,Walker Paul D.7,Kapatos Gregory18,Zhang Kezhong13

Affiliation:

1. Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI

2. Department of Physiology, Wayne State University School of Medicine, Detroit, MI

3. Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI

4. Department of Biological Sciences, University of Memphis, Memphis, TN

5. Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI

6. Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI

7. Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, MI

8. Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI

Abstract

The circadian clock orchestrates diverse physiological processes critical for health and disease. CREB, hepatocyte specific (CREBH) is a liver-enriched, endoplasmic reticulum (ER)–tethered transcription factor known to regulate the hepatic acute phase response and energy homeostasis under stress conditions. We demonstrate that CREBH is regulated by the circadian clock and functions as a circadian regulator of hepatic lipid metabolism. Proteolytic activation of CREBH in the liver exhibits typical circadian rhythmicity controlled by the core clock oscillator BMAL1 and AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates the association between CREBH and the coat protein complex II transport vesicle and thus controls the ER-to-Golgi transport and subsequent proteolytic cleavage of CREBH in a circadian manner. Functionally, CREBH regulates circadian expression of the key genes involved in triglyceride (TG) and fatty acid (FA) metabolism and is required to maintain circadian amplitudes of blood TG and FA in mice. During the circadian cycle, CREBH rhythmically regulates and interacts with the hepatic nuclear receptors peroxisome proliferator–activated receptor α and liver X receptor α as well as with the circadian oscillation activator DBP and the repressor E4BP4 to modulate CREBH transcriptional activities. In conclusion, these studies reveal that CREBH functions as a circadian-regulated liver transcriptional regulator that integrates energy metabolism with circadian rhythm.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Institute of Environmental Health Sciences

American Heart Association

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3