Sustained Upregulation of Endothelial Nox4 Mediates Retinal Vascular Pathology in Type 1 Diabetes

Author:

Tang Xixiang1234,Wang Jinli12,Abboud Hanna E.5,Chen Yanming3ORCID,Wang Joshua J.12,Zhang Sarah X.126ORCID

Affiliation:

1. 1Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY

2. 2SUNY Eye Institute, State University of New York, Buffalo, NY

3. 3Department of Endocrinology and Metabolism, Third Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China

4. 4VIP Medical Service Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

5. 5Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, TX

6. 6Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY

Abstract

NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in retinal endothelial cells (ECs) and is upregulated under hyperglycemic and hypoxic conditions. However, the role of endothelial Nox4 upregulation in long-term retinal blood vessel damage in diabetic retinopathy (DR) remains undefined. Here, we attempted to address this question using humanized EC-specific Nox4 transgenic (hNox4EC-Tg) and EC-specific Nox4 knockout (Nox4EC-KO) mouse models. Our results show that hNox4EC-Tg mice at age of 10–12 months exhibited increased tortuosity of retinal blood vessels, focal vascular leakage, and acellular capillary formation. In vitro study revealed enhanced apoptosis in brain microvascular ECs derived from hNox4EC-Tg mice, concomitant with increased mitochondrial ROS, elevated lipid peroxidation, decreased mitochondrial membrane potential, and reduced mitochondrial respiratory function. In contrast, EC-specific deletion of Nox4 decreased mitochondrial ROS generation, alleviated mitochondrial damage, reduced EC apoptosis, and protected the retina from acellular capillary formation and vascular hyperpermeability in a streptozotocin-induced diabetes mouse model. These findings suggest that sustained upregulation of Nox4 in the endothelium contributes to retinal vascular pathology in diabetes, at least in part, through impairing mitochondrial function. Normalization of Nox4 expression in ECs may provide a new approach for prevention of vascular injury in DR.

Funder

BrightFocus Foundation

National Eye Institute

Research to Prevent Blindness

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3