Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications

Author:

Strissel Katherine J.1,Stancheva Zlatina1,Miyoshi Hideaki1,Perfield James W.1,DeFuria Jason1,Jick Zoe1,Greenberg Andrew S.1,Obin Martin S.1

Affiliation:

1. From the Obesity and Metabolism Laboratory, Jean Mayer-U.S. Department of Agriculture Human Nutrition Research Center on Aging (JM-USDA HNRCA) at Tufts University, Boston, Massachusetts

Abstract

OBJECTIVE—We sought to determine the role of adipocyte death in obesity-induced adipose tissue (AT) inflammation and obesity complications. RESEARCH DESIGN AND METHODS—Male C57BL/6 mice were fed a high-fat diet for 20 weeks to induce obesity. Every 4 weeks, insulin resistance was assessed by intraperitoneal insulin tolerance tests, and epididymal (eAT) and inguinal subcutaneous AT (iAT) and livers were harvested for histological, immunohistochemical, and gene expression analyses. RESULTS—Frequency of adipocyte death in eAT increased from <0.1% at baseline to 16% at week 12, coincident with increases in 1) depot weight; 2) AT macrophages (ATMΦs) expressing F4/80 and CD11c; 3) mRNA for tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and interleukin (IL)-10; and 4) insulin resistance. ATMΦs in crown-like structures surrounding dead adipocytes expressed TNF-α and IL-6 proteins. Adipocyte number began to decline at week 12. At week 16, adipocyte death reached ∼80%, coincident with maximal expression of CD11c and inflammatory genes, loss (40%) of eAT mass, widespread collagen deposition, and accelerated hepatic macrosteatosis. By week 20, adipocyte number was restored with small adipocytes, coincident with reduced adipocyte death (fourfold), CD11c and MCP-1 gene expression (twofold), and insulin resistance (35%). eAT weight did not increase at week 20 and was inversely correlated with liver weight after week 12 (r = −0. 85, P < 0.001). In iAT, adipocyte death was first detected at week 12 and remained ≤3%. CONCLUSIONS—These results implicate depot-selective adipocyte death and MΦ-mediated AT remodeling in inflammatory and metabolic complications of murine obesity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3