A Guide for Selection of Genetic Instruments in Mendelian Randomization Studies of Type 2 Diabetes and HbA1c: Toward an Integrated Approach

Author:

Garfield Victoria1ORCID,Salzmann Antoine1,Burgess Stephen2,Chaturvedi Nish1

Affiliation:

1. 1MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, U.K.

2. 2Department of Public Health and Primary Care and MRC Biostatistics Unit, University of Cambridge, Cambridge, U.K.

Abstract

In this study we examine the instrument selection strategies currently used throughout the type 2 diabetes and HbA1c Mendelian randomization (MR) literature. We then argue for a more integrated and thorough approach, providing a framework to do this in the context of HbA1c and diabetes. We conducted a literature search for MR studies that have instrumented diabetes and/or HbA1c. We also used data from the UK Biobank (UKB) (N = 349,326) to calculate instrument strength metrics that are key in MR studies (the F statistic for average strength and R2 for total strength) with two different methods (“individual-level data regression” and Cragg-Donald formula). We used a 157–single nucleotide polymorphism (SNP) instrument for diabetes and a 51-SNP instrument (with partition into glycemic and erythrocytic as well) for HbA1c. Our literature search yielded 48 studies for diabetes and 22 for HbA1c. Our UKB empirical examples showed that irrespective of the method used to calculate metrics of strength and whether the instrument was the main one or included partition by function, the HbA1c genetic instrument is strong in terms of both average and total strength. For diabetes, a 157-SNP instrument was shown to have good average strength and total strength, but these were both substantially lesser than those of the HbA1c instrument. We provide a careful set of five recommendations to researchers who wish to genetically instrument type 2 diabetes and/or HbA1c. In MR studies of glycemia, investigators should take a more integrated approach when selecting genetic instruments, and we give specific guidance on how to do this.

Funder

Wellcome Trust

Diabetes UK

UK Medical Research Council

AstraZeneca

Royal Society

British Heart Foundation

Biomedical Research Centre

National Institute for Health Research

UK Biobank

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3