Relationships of Circulating Sex Hormone–Binding Globulin With Metabolic Traits in Humans

Author:

Peter Andreas1,Kantartzis Konstantinos1,Machann Jürgen2,Schick Fritz2,Staiger Harald1,Machicao Fausto1,Schleicher Erwin1,Fritsche Andreas1,Häring Hans-Ulrich1,Stefan Norbert1

Affiliation:

1. Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University of Tübingen, member of the German Center for Diabetes Research (DZD), Tübingen, Germany;

2. Section on Experimental Radiology, University of Tübingen, Tübingen, Germany.

Abstract

OBJECTIVE Recent data suggested that sex hormone–binding globulin (SHBG) levels decrease when fat accumulates in the liver and that circulating SHBG may be causally involved in the pathogenesis of type 2 diabetes in humans. In the present study, we investigated mechanisms by which high SHBG may prevent development to diabetes. RESEARCH DESIGN AND METHODS Before and during a 9-month lifestyle intervention, total body and visceral fat were precisely measured by magnetic resonance (MR) tomography and liver fat was measured by 1H-MR spectroscopy in 225 subjects. Insulin sensitivity was estimated from a 75-g oral glucose tolerance test (ISOGTT) and measured by a euglycemic hyperinsulinemic clamp (ISclamp, n = 172). Insulin secretion was measured during the OGTT and an ivGTT (n = 172). RESULTS SHBG levels correlated positively with insulin sensitivity (ISOGTT, P = 0.037; ISclamp, P = 0.057), independently of age, sex, and total body fat. In a multivariate model, these relationships were also significant after additional adjustment for levels of the adipokine adiponectin and the hepatokine fetuin-A (ISOGTT, P = 0.0096; ISclamp, P = 0.029). Adjustment of circulating SHBG for liver fat abolished the relationships of SHBG with insulin sensitivity. In contrast, circulating SHBG correlated negatively with fasting glycemia, before (r = −0.17, P = 0.009) and after (r = −0.14, P = 0.04) adjustment for liver fat. No correlation of circulating SHBG with adjusted insulin secretion was observed (OGTT, P = 0.16; ivGTT, P = 0.35). The SNP rs1799941 in SHBG was associated with circulating SHBG (P ≤ 0.025) but not with metabolic characteristics (all P > 0.18). CONCLUSIONS Possible mechanisms by which high circulating SHBG prevents the development of type 2 diabetes involve regulation of fasting glycemia but not alteration of insulin secretory function.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3