Effects of Growth Hormone on Insulin Action in Man: Mechanisms of Insulin Resistance, Impaired Suppression of Glucose Production, and Impaired Stimulation of Glucose Utilization

Author:

Rizza Robert A1,Mandarino Lawrence J1,Gerich John E1

Affiliation:

1. Endocrine Research Unit, Departments of Medicine and Physiology, Mayo Medical School and Mayo Clinic Rochester, Minnesota 55905

Abstract

The present studies were undertaken to assess the mechanisms responsible for growth hormone-induced insulin resistance in man. The insulin dose-response characteristics for suppression of glucose production and stimulation of glucose utilization and their relationship to monocyte insulin binding were determined in six normal volunteers after 12-h infusion of growth hormone and 12-h infusion of saline. The infusion of growth hormone (2 μg · kg−1 · h−1) increased plasma growth hormone nearly threefold (to ≃9 ng/ml) within the range observed during sleep and exercise. This increased plasma insulin (14 ± 1 versus 8 ± 1 μU/ml, P < 0.005) concentrations without significantly altering plasma glucose concentrations or basal rates of glucose production and utilization. Insulin dose-response curves for both suppression of glucose production (half-maximal response at 37 ± 3 versus 20 ± 3 μu/ml, P < 0.01) and stimulation of glucose utilization (half-maximal response at 98 ± 8 versus 52 ± 8 μU/ml, P / 0.01) were shifted to the right with preservation of normal maximal responses to insulin. Monocyte insulin binding was unaffected. Thus, except at near maximal insulin receptor occupancy, the action of insulin on glucose production and utilization per number of monocyte insulin receptors occupied was decreased. These results indicate that increases in plasma growth hormone within the physiologic range can cause insulin resistance in man, which is due to decreases in both hepatic and extrahepatic effects of insulin. Assuming that insulin binding to monocytes reflects insulin binding in insulin sensitive tissues, this decrease in insulin action can be explained on the basis of a postreceptor defect.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3