Branched Chain Amino Acids as a Major Source of Alanine Nitrogen in Man

Author:

Haymond Morey W1,Miles John M1

Affiliation:

1. Endocrine Research Unit, Departments of Pediatrics and Medicine, Mayo Clinic and Foundation Rochester, Minnesota 55901

Abstract

In vitro perfusion and incubation studies and recent investigations in dogs suggest that branched chain amino acids (BCAA) may be a major source of alanine nitrogen. To determine the contribution of BCAA nitrogen to the formation of alanine in man, seven postabsorptive adults received prime-dose constant infusions of 15N-leucine, L-[6,6,6-2H3] leucine, and L-[2,3,3,3-2H4] alanine; isotopic enrichment was determined in arterialized venous plasma samples by gas chromatography-mass spectroscopy. At substrate and isotope steady state, alanine flux and the rate of 15N alanine appearance were 5.4 ± 0.3 μmol/kg-min and 32 ± 2 nmol/kg·min, respectively. Leucine nitrogen flux was significantly > that of leucine carbon flux (2.54 ± 0.25 vs. 1.90 ± 0.10 μmol/kg·min, respectively; P < 0.001). The 30% greater flux of leucine nitrogen when compared with leucine carbon suggests significant recycling of the leucine carbon in vivo. The percent of circulating alanine nitrogen derived from leucine was 12.5 ± 1.5%; however, the rate of leucine nitrogen transferred to alanine was 0.66 ± 0.05 mumol/kg.min, and represents a minimum of 28% of leucine nitrogen going to alanine. On the basis of these data, together with the percent of alanine and leucine in body protein, only 40% of circulating plasma alanine could come from endogenous protein, whereas 60% is derived from de novo synthesis. In addition, at least 20% of the nitrogen required for alanine synthesis is derived solely from leucine following an overnight fast. Therefore, if the contribution of isoleucine and valine nitrogen is similar to that of leucine, the BCAA may contribute to a minimum of 60% of the nitrogen required for alanine synthesis in postabsorptive man.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3