Role of the Kidney in the Metabolism of Fructose in 60-hour Fasted Humans

Author:

Björkman Ola1,Felig Philip1

Affiliation:

1. Department of Clinical Physiology, Karolinska Institute and Huddinge University Hospital, S-141 86 Huddinge, Sweden; and the Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.

Abstract

SUMMARY Arterial (A) and renal venous (RV) concentrations and net splanchnic exchange of glucose, fructose, lactate, pyruvate, glycerol, and alanine were studied in the basal state and during a 135-min intravenous infusion of fructose at 2 mmol/min in healthy subjects after a 60-h fast. After 45 min of the fructose infusion, somatostatin (9 μg/min) was infused for 60 min to induce hypoglucagonemia. Fructose infusion resulted in a net uptake of this hexose by the kidney as well as the splanchnic bed. Estimated renal uptake of fructose could account for the disposal of 20% of the administered fructose load while splanchnic uptake accounted for 38%. The fructose infusion resulted in a rise in blood glucose of 0.9 mmol/L, a 35% increase in net glucose output from the splanchnic bed, and a consistent net output of glucose from the kidney (A-RV = −0.17 ± 0.05 mmol/L as compared with 0 ± 0.03 in the basal state, P < 0.02). Net glucose release from the kidney could account for 55% of the net renal uptake of fructose. The fructose infusion also resulted in a marked change in renal lactate balance from a net uptake in the basal state (A − RV = 0.05 ± 0.01 mmol/L) to a net output during fructose administration (A − RV = −0.10 ± 0.04). Administration of somatostatih resulted in a fall in arterial glucagon levels and a 35% decrease in splanchnic glucose output but failed to alter the arterial-renal venous difference for glucose observed during the fructose infusion. We conclude that in 60-h fasted man: (a) intravenous infusion of fructose results in a net uptake of this hexose by the kidney as well as the liver, (b) this uptake is accompanied by stimulation of renal as well as hepatic glucose production and renal production of lactate, and (c) hypoglucagonemia inhibits splanchnic but not renal glucose output during fructose infusion. These data indicate that the kidney is an important site of fructose disposal and that glucose and lactate are end products of renal fructose metabolism.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3