Anti-Islet Autoantibodies Trigger Autoimmune Diabetes in the Presence of an Increased Frequency of Islet-Reactive CD4 T Cells

Author:

Silva Diego G.1,Daley Stephen R.1,Hogan Jennifer1,Lee Sau K.1,Teh Charis E.1,Hu Daniel Y.1,Lam Kong-Peng2,Goodnow Christopher C.1,Vinuesa Carola G.1

Affiliation:

1. Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia

2. Bioprocessing Technology Institute, Singapore, Singapore

Abstract

OBJECTIVE To define cellular mechanisms by which B cells promote type 1 diabetes. RESEARCH DESIGN AND METHODS The study measured islet-specific CD4 T cell regulation in T-cell receptor transgenic mice with elevated frequencies of CD4 T cells recognizing hen egg lysozyme (HEL) autoantigen expressed in islet β-cells and thymic epithelium under control of the insulin-gene promoter. The effects of a mutation in Roquin that dysregulates T follicular helper (Tfh) cells to promote B-cell activation and anti-islet autoantibodies were studied, as were the effects of HEL antigen–presenting B cells and passively transferred or maternally transmitted anti-islet HEL antibodies. RESULTS Mouse anti-islet IgG antibodies—either formed as a consequence of excessive Tfh activity, maternally transmitted, or passively transferred—caused a breakdown of tolerance in islet-reactive CD4+ cells and fast progression to diabetes. Progression to diabetes was ameliorated in the absence of B cells or when the B cells could not secrete islet-specific IgG. Anti-islet antibodies increased the survival of proliferating islet-reactive CD4+ T cells. FcγR blockade delayed and reduced the incidence of autoimmune diabetes. CONCLUSIONS B cells can promote type 1 diabetes by secreting anti-islet autoantibodies that act in an FcγR-mediated manner to enhance the expansion of islet-reactive CD4 T cells and cooperate with inherited defects in thymic and peripheral CD4 T–cell tolerance. Cooperation between inherited variants affecting CD4 T–cell tolerance and anti-islet autoantibodies should be examined in epidemiological studies and in studies examining the efficacy of B-cell depletion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3