Retrograde Axonal Transport of Transmitter Enzymes, Fucose-Labeled Protein, and Nerve Growth Factor in Streptozotocin-Diabetic Rats

Author:

Jakobsen Johannes1,Brimijoin Stephen1,Skau Kenneth1,Sidenius Per1,Wells David1

Affiliation:

1. Departments of Pharmacology, Neurology, and Cardiovascular Research, Mayo Clinic Rochester, Minnesota

Abstract

Rapid axonal transport was studied by several methods in rats with serum glucose levels above 300 mg/dl as a result of treatment with streptozotocin (45–50 mg/kg) 3 days, 1 wk, 4 wk, 8 wk, or 4 mo earlier. With untreated age-matched rats as controls, rapid anterograde axonal transport in the sciatic nerves of diabetic rats appeared entirely normal. Statistically significant differences were never observed between experimental and control nerves in the basal content of acetylcholinesterase (AChE) and dopamine-β-hydroxylase (DBH) activity or in the rate of accumulation of these enzymes proximal or distal to a ligature. Therefore, the basic capacity for rapid anterograde and retrograde axonal transport of proteins was probably unimpaired in the diabetic nerves. The accumulation of labeled glycoproteins proximal to ligatures on the contralateral nerves of the same rats after injection of the L5 dorsal root ganglion with 3H-fucose was likewise normal. However, rats with 1, 4, and 8 wk of diabetes did show reduced accumulation of fucose-labeled protein distal to nerve ligations, indicating a long-lasting abnormality of retrograde axonal transport. Furthermore, this abnormality was reversed by daily insulin treatment during the second half of an 8-wk experimental period. It is therefore unlikely that the depression of retrograde transport reflects direct toxic effects of streptozotocin. We conclude that streptozotocin-induced diabetes leads to: (1) abnormal delay in the turnaround of transported proteins in distal nerve regions, perhaps combined with (2) an abnormal metabolism of glycoproteins. A delayed onset of retrograde transport is consistent with present observations of reduced accumulation of 125I-labeled nerve growth factor (NGF) below a midthigh ligature on the sciatic nerve after injection of this protein into the hindfoot of rats with 3–5 wk of diabetes. Further work on the factors controlling rapid retrograde transport of proteins in diabetic nerve is warranted.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3