Renal Function and Effects of Partial Rehydration During Diabetic Ketoacidosis

Author:

Owen Oliver E1,Hamilton Licht J1,Sapir Daniel G1

Affiliation:

1. Departments of Medicine and the General Clinical Research Centers, Temple University Health Sciences Center Philadelphia, Pennsylvania, and Johns Hopkins Hospital and the O'Neill Laboratories, Johns Hopkins School of Medicine Baltimore, Maryland

Abstract

Although diabetic ketoacidosis is characterized by increased renal excretion of glucose, ketone bodies, and nitrogenous compounds, there are few quantitative studies pertaining to renal function during this state. Therefore, renal function was studied in 10 adult patients in moderate to severe diabetic ketoacidosis before insulin administration. Admission plasma concentrations were: glucose 21.4 (9.2–39.4) mM or 386 (166–710) mg/dl, acetoacetate 3.0 (1.3–7.4) mM, beta-hydroxybutyrate 7.9 (2.9–15.2) mM, acetone 4.4 (1.3–8.9) mM, and HCO3 12.8 (9.5–17.8) mM. Arterial blood pH was 7.28 (7.21–7.38). Partial rehydration was achieved with 0.45% saline. Inulin was used to measure GFR. Renal clearance of acetoacetate, beta-hydroxybutyrate, acetone, glucose, and urinary excretion of nitrogenous compounds were determined. Partial rehydration reduced plasma glucose concentration, primarily because of renal excretion, amounting to 384 ± 73 μmol/min or 69 ± 13 mg/min. Partial rehydration had no effect on plasma ketone bodies, on bicarbonate or urea concentrations, or on arterial pH. Partial rehydration had no effect on ketone body or nitrogenous compound excretory rates. Reabsorptive rates of acetoacetate, beta-hydroxybutyrate, acetone, and glucose increased linearly with their filtered loads, and no maximal renal tubular transport rates were demonstrated for any ketone body or glucose. Because renal absorption of ketone bodies was less than 100%, ketonuria increased as filtered loads increase. Unlike ketone bodies, glucose reabsorptive rate was directly related to GFR. Total renal excretion of nitrogen in the forms of urea, ammonium, creatinine, and uric acid amounted to 16 ± 2 mg/min. This huge loss of body nitrogen reflected ongoing protein catabolism and not heightened renal excretion of preformed compounds, as the plasma concentrations of urea, creatinine, and uric acid did not change during the study. Urea nitrogen accounted for 12 ± 2 mg/min (72%) of the total nitrogen excreted. Ammonium excretion was markedly augmented, ranging from 76 to 537 μmol/min, and was inversely related to arterial pH. We conclude that the fall in plasma glucose concentration is primarily caused by renal glucose excretion, and that the absence of a maximal renal tubular reab-sorption rate for either acetoacetate (AcAc) or beta-hydroxybutyrate (β-OHB) serves to mitigate urinary losses of sodium and potassium during diabetic ketoacidosis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3