Effects of Insulin and Insulin-like Agents on the Glucose Transport System of Cultured Human Fibroblasts

Author:

Berhanu Paulos1,Olefsky Jerrold M1

Affiliation:

1. Department of Medicine, University of Colorado Health Science Center, Division of Endocrinology Denver, Colorado

Abstract

We have studied the effects of insulin and insulin-like agents on glucose transport by cultured human fibro-blast monolayers. Initial rates of glucose transport were determined by measurement of 2-deoxy-D-glu-cose uptake. At physiologic concentrations, insulin stimulates 2-deoxy-D-glucose transport (average of 50% over basal) with a half-maximally effective insulin concentration of 3.3 ± 0.9 ng/ml. This effect of insulin is rapid and is half-maximal at 10 min and becomes maximal by about 30 min. Kinetic analyses showed that insulin increased the transport Vmax from 7.4 ± 0.9 nmol/min/106 cells to 11.0 ± 1.5 nmol/min/106 cells and had no effect on the Km value (2.5 ± 0.3 mM). While glucose starvation led to a higher overall rate of 2-deoxy-D-glucose transport, the relative stimulation by insulin was the same as in non-glucose-starved cells. Insulin mimickers [insulin-like growth factor (IGF), anti-insulin receptor antibody, and concanavalin A] also stimulate 2-deoxy-D-glucose transport by human fibroblast monolayers in a dose-dependent manner and the maximal effects of IGF and anti-insulin receptor antibody were the same as that of insulin, while the maximal effect of concanavalin A was only 78% of that of insulin. The maximal effects of either insulin and IGF or insulin and anti-insulin receptor antibody were not additive, suggesting that these agents all act via the same glucose transport effector system in human fibroblasts. In conclusion, human fibroblasts possess an insulin-sensitive glucose transport system that displays many of the characteristics common to other more well studied transport systems. Thus, cultured human fibroblasts can serve as an important model for physiologic studies of insulin action and glucose transport, and for studies of pathophysiologic abnormalities of these processes in cells obtained from patients with various disease states.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3